Lo studio mostra come l'eventuale rilevazione degli echi gravitazionali possa fornire nuovi indizi sulla teoria della gravità di Einstein
Nello studio appena pubblicato sulla rivista “Nature Astronomy” i ricercatori Paolo Pani del dipartimento di Fisica della Sapienza e Vitor Cardoso dell'Instituto Superior Técnico di Lisbona discutono di come, alla luce di nuovi modelli teorici, l'astronomia gravitazionale possa fornire informazioni sulla natura dei cosiddetti “oggetti compatti”, termine col quale in astrofisica vengono indicate grandi masse concentrate in dimensioni molto ridotte, come i buchi neri. Le onde gravitazionali contengono informazioni sulla natura degli oggetti compatti, proprio come le onde sonore prodotte da uno strumento musicale dipendono dalle proprietà di quest'ultimo: forma, dimensione, materiale. La loro rilevazione, meno di due anni fa, ha rappresentato una importantissima conferma della teoria di Einstein e ha aperto la strada a un nuovo capitolo della fisica. Secondo la teoria della relatività generale di Einstein, una stella massiccia alla fine del suo ciclo di vita collassa sotto il suo stesso peso e forma un "buco nero", un oggetto che distorce lo spazio-tempo in maniera così drastica che nemmeno la luce è in grado di uscire dal suo "orizzonte degli eventi", cioè la regione oltre la quale non è più possibile osservare un fenomeno. Nuovi modelli teorici suggeriscono che l’eventuale presenza di “echi gravitazionali”, se rilevati dagli interferometri LIGO e Virgo, potrebbe indicare che i buchi neri non sono come fino a oggi ipotizzato: vari modelli di gravità quantistica prevedono che l'orizzonte degli eventi non si formi e che il collasso gravitazionale termini con la formazione di un oggetto esotico compatto e non un vero e proprio buco nero.
I risultati del cacciatore di antimateria AMS, acronimo di Alpha Magnetic Spectrometer, saranno da oggi i protagonisti della tre giorni “AMS days at CERN”, che vede coinvolti alcuni tra i più importanti fisici teorici e sperimentali a livello mondiale. Il cacciatore di antimateria è installato sulla Stazione Spaziale Internazionale dal 2011 e sarà al centro delle giornate per i suoi recenti risultati. C’è infatti una nuova evidenza di un eccesso di antiparticelle nei raggi cosmici: in particolare, AMS presenta la nuova misura di precisione del rapporto tra il flusso di antiprotoni e di protoni nei raggi cosmici, risultato che mostra per la prima volta una inattesa abbondanza di antiprotoni ad energie di centinaia di GeV. Questa misura risulta complementare alla misura di precisione del flusso di antielettroni (positroni) pubblicata da AMS nel 2014, che evidenzia anch’essa un eccesso di antimateria ad alta energia.
La Particella di Dio sfugge, non è stata trovata, ma ha lasciato delle tracce!
13 Dic 2011 Scritto da Nicola A. CosanniI nuovi dati restringono il campo per la ricerca del bosone in uno stretto margine a energie minori del previsto, è quanto rendono pubblico gli italiani Fabiola Gianotti e Guido Tonelli dell'Istituto nazionale di fisica nucleare (Infn). L'esistenza del bosone di Higgs, ipotizzato dal fisico britannico Peter Higgs oltre 40 anni fa, rende possibile la massa. In pratica i nuovi dati restringono il campo per la ricerca del bosone a energie minori del previsto si spera di fugare ogni dubbio entro la fine del 2012, quando sarà completata l'analisi degli esperimenti in corso.La famosa particella di Dio, il bosone di Higgs, non è stato trovato. Però sono state trovate tracce del suo passaggio in due importanti esperimenti di fisica nucleare che si stanno svolgendo a Ginevra, al Cern, attorno al Large Hadron Colllider, il più grande acceleratore di particelle oggi esistente.