The chickpea is currently not one of the plants mentioned above on which the global diet is currently mainly based. The international research team led by Wolfram Weckwerth has now researched the natural variations of different chickpea genotypes and their resistance to drought stress and achieved promising results. The team managed to grow many different chickpea varieties under drought stress in a field experiment in a Vienna city region, demonstrating that chickpeas are a great alternative legume plant with a high protein content that can complement grain farming systems in urban areas. "The different varieties and wild types show very different mechanisms to deal with persistent drought stress. This natural genetic variability is particularly important in order to withstand climate change and ensure the survival of the plant," says Weckwerth.
"In our study, we used a stress susceptibility index (SSI) to assess the effects of drought stress on yield. This allowed us to identify genotypes that perform best and worst under stressful conditions. Our findings are crucial for the selection of genotypes for breeding drought-tolerant chickpeas," explains Palak Chaturvedi from the University of Vienna, lead author of the study. The team used artificial intelligence, multivariate statistics and modeling to identify markers and mechanisms for better resilience to drought stress.
"With their high protein content and their drought resistance, legumes such as chickpeas are a food of the future. Another advantage is that a higher proportion of legumes in a country's agricultural systems improves the overall efficiency of nitrogen use - this also makes agriculture more sustainable," summarizes Weckwerth.