Articoli filtrati per data: Mercoledì, 09 Gennaio 2019

 

 
 

Researchers have found that neighbour-cells can take over functions of damaged or missing insulin-producing cells. The discovery may lead to new treatments for diabetes.
Diabetes is caused by damaged or non-existing insulin cells inability to produce insulin, a hormone that is necessary in regulating blood sugar levels. Many diabetes patients take insulin supplements to regulate these levels.

In collaboration with other international researchers, researchers at the University of Bergen have, discovered that glucagon producing cells in the pancreas, can change identity and adapt so that they do the job for their neighbouring damaged or missing insulin cells.

“We are possibly facing the start of a totally new form of treatment for diabetes, where the body can produce its own insulin, with some start-up help,” says Researcher Luiza Ghila at the Raeder Research Lab, Department of Clinical Science, University of Bergen (UiB).

The results are published in Nature Cell Biology.

Cells can change identity

The researchers discovered that only about 2 per cent the neighbouring cells in the pancreas could change identity. However, event that amount makes the researchers are optimistic about potential new treatment approaches.

For the first time in history, researchers were able to describe the mechanisms behind the process of cell identity. It turns out that this is not at passive process, but is a result of signals from the surrounding cells. In the study, researchers were able to increase the number of insulin producing cells to 5 per cent, by using a drug that influenced the inter-cell signalling process. Thus far, the results have only been shown in animal models.

“If we gain more knowledge about the mechanisms behind this cell flexibility, then we could possibly be able to control the process and change more cells’ identities so that more insulin can be produced, ” Ghila explains.
Pubblicato in Scienceonline

 


Research carried out at the University of Adelaide shows that obese women lost more weight and improved their health by fasting intermittently while following a strictly controlled diet. The study, published in the journal Obesity, involved a sample of 88 women following carefully controlled diets over 10 weeks.

“Continuously restricting their diet is the main way that obese women try to tackle their weight,” says Dr Amy Hutchison, lead author from the University of Adelaide and the South Australian Health and Medical Research Institute (SAHMRI). “Unfortunately, studies have shown that long-term adherence to a restricted diet is very challenging for people to follow, so this study looked at the impact of intermittent fasting on weight loss. “Obese women who followed a diet in which they ate 70% of their required energy intake and fasted intermittently lost the most weight. “Other women in the study who either fasted intermittently without reducing their food intake, who reduced their food intake but did not fast, or did not restrict their diet at all, were not as successful in losing weight,” says Dr Hutchison.

The study also checked the effect of the different diets on the women’s health. Women who fasted intermittently as well as restricting their food improved their health more than those who only restricted their diet or only fasted intermittently. “By adhering to a strict pattern of intermittent fasting and dieting, obese women have achieved significant weight loss and improvements in their health such as decreased markers for heart disease,” says Dr Hutchison. Participants who fasted intermittently ate breakfast and then refrained from eating for 24 hours followed by 24 hours of eating. The following day they fasted again.

Pubblicato in Scienceonline

Realizzata per la prima volta la connessione sinaptica tra neuroni tramite un dispositivo elettronico (memristore) sviluppato da polimeri, garantendo funzionalità analoghe alle sinapsi naturali. Viene così abilitata la diretta comunicazione tra neuroni in modo artificiale, aprendo prospettive nelle interfacce brain-computer e nella protesica di nuova generazione. La ricerca, condotta dal Cnr-Imem, è pubblicata su Advanced Materials Technologies

 

Una sinapsi è una struttura biologica che connette due neuroni stabilendo tra essi un flusso di informazioni specifico e unidirezionale. Queste connessioni sono elementi chiave per funzioni neuronali essenziali come l’apprendimento e la memorizzazione che si fondano sul numero di ripetizioni (o prove) e il raggiungimento di varie soglie di tensione.

L’emulazione delle loro proprietà e la realizzazione di interfacce tra cervello e macchine (brain-computer), in grado di acquisire, leggere e stimolare l’attività celebrale naturale, è oggetto di studio intensivo crescente nel panorama delle ricerche internazionali.

Grazie allo studio condotto da Silvia Battistoni, Victor Erokhin e Salvatore Iannotta, l’Istituto dei materiali per l'elettronica ed il magnetismo del Consiglio nazionale delle ricerche (Cnr-Imem) ha realizzato dei memristori organici, dispositivi in grado di trattenere una memoria della corrente passata al loro interno, in grado di emulare i comportamenti sinaptici di memorizzazione e apprendimento delle cellule neuronali naturali. Lo studio è stato pubblicato su Advanced Materials Technologies. “I risultati dimostrano l’effettiva interfaccia funzionale ‘neurone-memristore-neurone’, in cui il dispositivo gioca il ruolo di una sinapsi, consentendo la comunicazione tra le due cellule in modo pressoché analogo a quanto avviene in natura con un importante cambio di paradigma rispetto all’approccio consolidato basato su microelettrodi”, spiega Salvatore Iannotta del Cnr-Imem. “Dettagli molto rilevanti della comunicazione interneuronale sono riprodotti, sia dal punto di vista dell’eccitazione reciproca tra i neuroni sia nel dettaglio dell’evoluzione temporale”.

Pubblicato in Medicina

 

Scienzaonline con sottotitolo Sciencenew  - Periodico
Autorizzazioni del Tribunale di Roma – diffusioni:
telematica quotidiana 229/2006 del 08/06/2006
mensile per mezzo stampa 293/2003 del 07/07/2003
Scienceonline, Autorizzazione del Tribunale di Roma 228/2006 del 29/05/06
Pubblicato a Roma – Via A. De Viti de Marco, 50 – Direttore Responsabile Guido Donati

Photo Gallery