An Urban Collection of Modern-Day Micrometeorites

More than 100 billion micrometeorites (MMs) fall to Earth each year. Until now, scientists believed that these particles could only be found in the cleanest environments, such as the Antarctic. In their new paper for Geology, M.J. Genge and colleagues show that, contrary to that expectation, micrometeorites can be recovered from city rooftops (for this example, primarily in Norway) and that, unlike those from the Antarctic, they are the youngest collected to date.
An Urban Collection of Modern-Day Micrometeorites
More than 100 billion micrometeorites (MMs) fall to Earth each year. Until now, scientists believed that these particles could only be found in the cleanest environments, such as the Antarctic. In their new paper for Geology, M.J. Genge and colleagues show that, contrary to that expectation, micrometeorites can be recovered from city rooftops (for this example, primarily in Norway) and that, unlike those from the Antarctic, they are the youngest collected to date.
An Urban Collection of Modern-Day Micrometeorites
More than 100 billion micrometeorites (MMs) fall to Earth each year. Until now, scientists believed that these particles could only be found in the cleanest environments, such as the Antarctic. In their new paper for Geology, M.J. Genge and colleagues show that, contrary to that expectation, micrometeorites can be recovered from city rooftops (for this example, primarily in Norway) and that, unlike those from the Antarctic, they are the youngest collected to date.
Manipulating gene expression precisely using light

A Hokkaido University researcher has successfully developed a method to accurately manipulate gene expression by light illumination and demonstrated its usability by creating double-headed zebrafish.
It has been difficult to freely manipulate the timing and duration of gene expression using existing gene manipulation technologies, which depend on organism’s gene regulating mechanism. In recent years, methods using light to regulate gene expression have been developed, but deemed insufficient to manipulate embryonic development. This is due to a time lag of several hours that occurs from light irradiation to the start/cessation of protein production. Existing photocontrol technologies also require genetic modification, a process that is not only time-consuming but also strictly regulated by the Cartagena Protocol.
Medicina
Il "custode" dell'embrione: scoperto il ruolo degli RNA ultraconservati nello sviluppo precoce
Una ricerca internazionale guidata dal Cnr-Igb di Napoli rivela come...
Paleontologia
Preistoria cantabrica: un nuovo studio ricalibra l'orologio del periodo Maddaleniano
Una ricerca internazionale ha perfezionato la datazione al radiocarbonio dei reperti marini, migliorando drasticamente...
Un archivio sotterraneo rivela...
Uno studio internazionale di grande impatto, guidato dall’Istituto...
Geografia e Storia
Dagli Ipogei del Tepui venezuelano ai terreni marziani: un protocollo innovativo per l'indagine di siti estremi
Un team internazionale ha applicato metodologie analitiche portatili avanzate per esaminare in situ le...
Astronomia e Spazio
Destinazione Giove: a Roma nasce lo SWIM Lab per scovare oceani extraterrestri
Inaugurato presso l'Università Roma Tre un centro di eccellenza mondiale: studierà...
Scienze Naturali e Ambiente
Meno carne, più Futuro: al via la settimana "Meat Free" del WWF
Il volto del nostro Pianeta è cambiato: oggi la fauna selvatica...







